東京臨海・都心部におけるヒートアイランド現象の実測調査と数値計算 (その6)品川駅周辺の実測調査

品川駅周辺 風系 風の道 実測調査

1. 研究目的

その5にて風配図による連続するオープンスペースの風環 境把握を試みた。

そこで、本報告ではさらに各観測ラインの風環境の分析を 行い、風系の違いによる気温分布への影響のケーススタディ として品川駅周辺の考察を行う。

2. 「風の道」の風速成分の分析

2.1 「風の道」の風速成分の算出方法

その4にて使用した「卓越風の主軸」を参考に、連続する オープンスペースの「風の道」としての機能を、街路方向に 沿った風速成分と海岸線からの距離との関係より把握を試み る。以下に手順を示す。1)図1のように街路方向を「風の道」 の主軸と設定する。2)海側を「+」、陸側を「-」として計 算する。3)街路における風速ベクトルの「風の道」の主軸か らの「ずれ」を把握し、下に示す算出式より「風の道」の風 速成分を算出する(図2)、「風の道」の風速成分は、街路に 沿った風の風速を示し、値が大きい場合は「風の道」として の機能が大きいと判断できる。大規模風系、小規模風系それ ぞれの時間帯における「風の道」の風速成分を全観測点で算 出し、その平均値を用いて考察を行う。

(算出式)

 Vx = V × cos
 Vx :「風の道」の風速成分

 V : 街路における風速ベクトル

:「風の道」の主軸からの「ずれ」 (注)Calm時のベクトルから海風成分を算出できないため、 風速を0として算出した。

2.2 連続するオープンスペースにおける調査結果

東京駅周辺の分析結果(図3)を見ると、Aラインは大規模 風系時間帯は観測点A4 では河口からの風を観測していない

Measurement and Numerical Simulation of Heat Island Phenomena in Tokyo Part6 Measurement in Shinagawa Station Area

正会員	田村 健*	正会員	鍵屋浩司 ***
正会員	瀬野太郎 [·]	正会員	高橋信之 ****
正会員	増田幸宏 **	名誉会員	尾島俊雄 *****

が、小規模風系時間帯は全観測点において河口からの風を観 測した。また、B、Cラインでは、両風系で観測点1~3にお いて街路に沿った東京湾からの風を観測している。Dライン では、大規模風系時間帯は観測点D3においては街路に沿った 風が安定していないが、小規模風系時間帯は全観測点で街路 に沿った風を観測している。また、Eラインの大規模風系時 間帯では観測点E2において汐留のビル群の影響により、街路 に沿った風が安定していないが、小規模風系時間帯は観測点 E3まで街路に沿った海側からの風を観測している。また、小 規模風系時間帯において観測点C4、D4、E4では内陸側からの 街路に沿った風を観測した。

品川駅・大崎駅周辺の分析結果(図4)を見ると、Fライン は眼前にある水門の影響により、観測点F1の「風の道」風速 成分が小さくなっていると思われるが、両風系にて全観測点 で連続するオープンスペースに沿った「風の道」の風速成分 を観測した。また、Gラインは観測点G3以外は、両風系にて 街路に沿った「風の道」の風速成分を観測した。Hラインは 両風系で河川に沿った風を観測したが、観測点H1に関しては 大規模風系時間帯は東京湾へ、小規模風系時間帯は内陸へ向 かう風を観測している。

2.3 「風の道」の風速成分の分析結果

以上の分析結果とその5の結果を踏まえると、大規模風 系、小規模風系の各風系で道路、河川、運河等の連続するオー プンスペースにおける風環境は異なるが、海岸付近では全観 測点において連続するオープンスペースに沿った風が流入し ていることが分かった。

しかし、大規模風系時間帯においては南側を主風向とした 風の影響も大きく、内陸側で南北方向の連続するオープンス ペースの影響を受けている観測点が多くあった。一方、小規 模風系時間帯においては多くの観測点において内陸側まで連 続する風、及び内陸側からのオープンスペースに沿った風を 観測し、ほぼ全てのラインにおいて「風の道」としての機能 を有すると考えられる。

この結果を踏まえた上で、次に品川駅周辺における各風系の気温分布への影響を考察する。

TAMURA Takeshi,SENO Taro,MASUDA Yukihiro,KAGIYA Koji TAKAHASHI Nobuyuki,OJIMA Toshio

3. 品川駅周辺の実測調査(気温分布)

3.1 調査概要

その4、その5、前項にて東京臨海部及び東京都心の風環 境の把握を行った。これらを踏まえ、本調査では大規模風系 の南側を主風向とする風と小規模風系の海岸線に直交した 風(品川駅周辺地域においては東風)が品川駅周辺の気温に 与える影響の分析を行う。

3.2 海岸線に直交する風が流入する時間帯前後の気温 海岸線に直交する風(以後、東風)を多く観測した8月4日の屋上観測点芝浦における風向日変化を図5に示す。8月4日において午前4時頃から7時頃の風向は不安定であり、この時間帯を東風時間帯前とする。その後午前9時頃から風向が安定し始め、以降を東風時間帯とし考察を行う。

東風時間帯前として8月4日午前6時、東風時間帯として 8月4日9時半の気温偏差分布をそれぞれ図7、図8に示す。 東風時間帯前は気温差はあまり見られない。東風時間帯に なると低温域がJR線路を越え、西側にまで広がっており、東 側と西側では最大3 以上の気温差が見られる。

3.3 南を主風向とする風が流入する時間帯前後の気温

南を主風向とする風(以後、南風)を多く観測した8月3 日の風向日変化を図6に示す。8月3日において午前4時から 午前8時頃屋上観測点芝浦の風向は不安定であり、この時間 帯を南風時間帯前とする。その後10時頃から安定し始め、以 降を南風時間帯とし考察を行う。

南風時間帯前として8月4日午前6時、南風時間帯として 8月3日10時半の気温偏差分布をそれぞれ図9、10に示す。南 風時間帯前は気温差はあまり見られない。南風時間帯では、 JR線の東側においては低温域が広がっていることが分かる。 3.4 海岸から連続するオープンスペースの有効性

海岸から連続するFラインとFラインと並行する海岸から 連続していない街路上の観測点1,2,3,4との比較を行う。図 11 に観測点図、図12 にFラインと海岸から連続していない ラインとの平均気温の差を示す。東風時間帯ではFラインの 全観測点で海岸方向から対応する観測点を下回っている。 南風時間帯では内陸に進むに従い気温差は小さくなり観測 点F4 においては観測点4の気温より上回る結果になった。 4.**まとめ**

南側を主風向とする風が流入する時間帯と比較し、海岸 線に直交する風が流入する時間帯では連続するオープンス ペースにおいて、海からの風が内陸側まで流入しているこ とが分かった。それに伴い、南風時間帯は海岸付近で気温上 昇緩和が見られ、東風時間帯では海岸付近のみならず、内陸 側まで気温上昇緩和が見られた。

この結果より、都市の生活環境向上を考える上では、日中 の暑熱環境の緩和に寄与する大規模風系と共に、熱帯夜緩 和に寄与する小規模風系にも考慮した「風の道」を都市へと 導入する必要があると考えられる。

謝辞)本研究(その4~6)では、気象庁のAMeDAS、首都大 学東京(三上岳彦教授(湾岸観測検討会メンバー))と東京 都環境科学研究所のMETROS20、東京海洋大学海洋工学部(村 山利幸教授)の越中島、東京都東京港防災事務所の浜離宮排 水機場、都市再生機構(今井隆滋様)の芝浦で観測している データを使用させて頂きました。

注)本研究は湾岸観測検討会の一環として実施されたもので ある。

*	早稲田大学大学院 修士課程	*	V	Vaseda.Univ.
* *	早稲田大学理工学総合研究センター	講師 博士(工学)**	, I	_ecturer, Rise, Waseda Univ., Ph.D
* * *	国土交通省国土技術政策総合研究所	博士(工学) ***	* 1	National Inst. for Land and Infra. Mngmt, MLIT, Ph.D
* * * * *	早稲田大学理工学総合研究センター	教授・工博 ***	*** F	Prof., Advanced Research Center for Science and Engineering of Waseda Univ.,Dr.Eng
* * * * * *	早稲田大学 教授 工博	***	*** F	Prof.,Waseda Univ.,Dr.Eng